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Molecular Fingerprint Recombination: Generating Hybrid
Fingerprints for Similarity Searching from Different

Fingerprint Types

Britta Nisius and Jiirgen Bajorath*®

Molecular fingerprints have a long history in computational
medicinal chemistry and continue to be popular tools for simi-
larity searching. Over the years, a variety of fingerprint types
have been introduced. We report an approach to identify pre-
ferred bit subsets in fingerprints of different design and “re-

Introduction

Molecular fingerprints are bit string representations encoding
structural, topological, pharmacophore, or property descriptors
and are widely used as similarity search tools in chemical data-
base mining and computer-aided hit identification."’ Reasons
for the popularity of fingerprints include their computational
efficiency, ease of use, intuitive nature, and often surprising ef-
fectiveness in identifying new active molecules.? This applies
to both 2D and 3D fingerprints that are generated from 2D
and 3D molecular representations, respectively.”! A variety of
fingerprint types of different design have been introduced in-
cluding, for example, substructure,” hashed connectivity path-
way,” extended connectivity,”” pharmacophore,”® or molecu-
lar property fingerprints.”'™ A systematic comparison of vari-
ous fingerprint types capturing different aspects of molecular
structures has recently been reported.™

Keyed 2D fingerprints where each individual bit position is
associated with a structural feature, pharmacophore pattern,
or property descriptor are particularly intuitive representations
because similarity search results can often be chemically inter-
preted and features that produce bit settings characteristic of
different compound activity classes can be identified. This can
be accomplished through the application of computational
methods such as consensus fingerprinting,!'? fingerprint profile
analysis,”"¥ or reverse fingerprinting."”

In recent years, relatively few conceptually new fingerprint
designs have been reported,®'®™ but much attention has
been focused on developing fingerprint search strategies that
effectively take into account information from multiple refer-
ence compounds. Intensely investigated approaches include
consensus fingerprinting,'? fingerprint averaging (or centroid)
techniques,''® fingerprint scaling,”"” feature scoring™ and, in
particular, data fusion methods such as nearest neighbour cal-
culations.['6781)

In addition to exploring different fingerprint designs and
similarity search strategies, efforts in our laboratory have also
focused on fingerprint reduction approaches in order to gener-
ate minimal fingerprint representations retaining high search
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combine” these bit segments into “hybrid fingerprints”. These
compound class-directed fingerprint representations are found
to increase the similarity search performance of their parental
fingerprints, which can be rationalized by the often comple-
mentary nature of distinct fingerprint features.

performance. For this purpose, methods such as bit density re-
duction,® bit silencing,?” fragment frequency analysis,”? or
feature filtering® have been developed. In addition, Kullback-
Leibler (KL) divergence analysis from information theory® has
been adopted for Bayesian fingerprint similarity searching'® to
perform fingerprint bit ranking and fingerprint reduction.*
Fingerprint reduction analyses have revealed that typically only
subsets of bit positions determine fingerprint search perfor-
mance.[21,23,26]

Although individual fingerprints have been modified in
order to increase their search performance and different finger-
print designs have been extensively compared in similarity
searching, it has thus far not been attempted to combine fea-
tures selected from different fingerprint types. Reasons for this
might include that fingerprints have traditionally been utilized
as standalone search tools and that it is perhaps not very intui-
tive to merge different fingerprint designs. However, given our
findings that bit subset are often responsible for fingerprint
search performance, we have set out to isolate preferred bit
segments from different types of fingerprints and “recombine”
them into other fingerprint representations. The methodology
reported herein generates “hybrid fingerprints” for convention-
al similarity searching. We show that merging selected struc-
tural fragments and pharmacophore features from different
fingerprints into hybrid representations further increases the
search performance of the original fingerprints.
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Computational Methods

Three fingerprints of different design were utilized for our analysis
including MACCS®” structural keys and two 2D topological or
pharmacophore fingerprints, TGD and TGT.”® MACCS consists of
166 bits that represent structural fragments or patterns consisting
of 1-10 nonhydrogen atoms. By contrast, TGD is a two-point topo-
logical fingerprint containing 420 bits that represent atom pairs”®”
where each atom is assigned to one of seven atom types and
inter-atomic distances are divided into 15 different bond distances.
Furthermore, TGT is a three-point pharmacophore fingerprint con-
taining 1,704 bits that represent atom triangles. This fingerprint en-
codes combinations of four different atom types and six different
graph distance ranges. A single feature consists of a sextuplet of
three atom types and three bond distances between those atom

types.

Individual fingerprint bit positions were ranked based on KL diver-
gence utilized as a measure of differences in bit distributions be-
tween active and database compounds. Accordingly, the KL diver-
gence mirrors the ability of a bit position to discriminate between
active and database molecules (i.e. the larger the divergence value,
the more discriminatory the bit position). A detailed description of
the KL divergence formalism and divergence calculations for fin-
gerprint bit positions is provided as supplementary methods in the
Supporting Information together with an exemplary bit position/
feature ranking.

KL divergence calculations and similarity search calculations were
carried out on a previously reported®” set of 27 compound activity
classes containing between 30 and 159 compounds, as summar-
ized in table S1 (Supporting Information). As background database
for divergence and search calculations, ~3.7 million compounds
from ZINC®" with unique 2D molecular graphs were used.

For 100 randomly selected reference sets of 20 compounds of
each activity class and each fingerprint, a KL divergence analysis
was carried out to compare bit settings in active and database
compounds and rank bit positions according to average diver-
gence values. Based on KL divergence ranking, the 100 top-scoring
bit positions of each fingerprint were selected and combined to
create 27 activity-class specific hybrid fingerprints, each consisting
of 300 bits encoding structural or topological/pharmacophore fea-
tures. The hybrid fingerprints were then evaluated and compared
to the parental fingerprints and a fingerprint representing their
complete combination (i.e. 2,290 bits) in conventional similarity
search calculations using multiple reference compounds. Therefore,
k nearest neighbour (k-NN)!"®'®'¥ searching and Tanimoto coeffi-
cient (Tc)®? calculations were carried out. The k nearest neighbour
method (k-NN) calculates the Tc of a database molecule for each
individual reference compound. The resulting similarity scores are
sorted, and the k highest values, corresponding to the k nearest-
neighbours, are averaged to yield the final similarity score for rank-
ing. In 1-NN calculations, only the top score is selected. We have
carried out systematic 1-NN and 5-NN similarity search calculations
over all activity classes.

For each activity class, 100 sets of 20 reference compounds were
randomly selected for similarity searching and the remaining active
compounds were added to the background database as potential
hits. The performance was analyzed by calculating cumulative
recall curves reporting the number of active molecules among the
top-ranked database compounds averaged over all 100 search cal-
culations.
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Results and Discussion

Combining parts of different fingerprints into hybrids repre-
sents a previously unexplored fingerprint design strategy.
Figure 1 schematically illustrates the fingerprint recombination
approach. Preferred subsets of fingerprint bit positions might

Substructural fingerprint
LT T 1

Kullback-Leibler bit
divergence analysis

Pharmacophore fingerprint

Hybrid fingerprint

CLLT T —

l

Similarity searching

Figure 1. Fingerprint recombination. Bit subsets of two or more different
types of fingerprints are selected based on divergence analysis and com-
bined to generate a hybrid fingerprint for conventional similarity searching.

be selected by different means. Thus, fingerprint recombina-
tion is not dependent on information theoretic approaches.
However, KL divergence analysis has proven to be an effective
method to prioritize fingerprint bits based on their potential to
differentiate between active and random database com-
pounds.?** KL divergence selection makes it possible to rank
bit positions and individually add them to a new fingerprint.
Tables 1 and 2 report top-ranked bit positions/features for two
activity classes. The probability and corresponding divergence
values reveal that these bits have a high probability to be set
on in active and a very low probability to be set on in data-
base compounds. Hybrid fingerprints are activity class-directed,
of variable size, and, due to their keyed format, generally appli-
cable in conventional similarity searching. For our study, we
have generated hybrid fingerprints containing 300 bits taken
from a total of 2,290 bit positions available in MACCS, TGD,
and TGT. Thus, these hybrids combine features selected from a
substructure fingerprint and two distinct 2D topological or
pharmacophore fingerprints.

Hybrid fingerprints were compared to their parental and ad-
ditional control fingerprints in systematic similarity search cal-
culations over 27 compound activity classes. Figure 2 shows
representative examples of cumulative recall curves for 1-NN
calculations that mirror trends we consistently observed. The
search performance of MACCS, TGD, and TGT varied in an ac-
tivity class-dependent manner: MACCS was best for 16 classes,
TGT for six, and TGD for five. However, in almost all cases,
hybrid fingerprints produced higher recall rates than their pa-
rental fingerprints, as discussed in more detail below. Recovery
rate increases were often significant and led to a substantial
enrichment of active compounds in relatively small database
selection sets of approximately 100 compounds. As a control,
we merged MACCS, TGD, and TGT into a single fingerprint
consisting of 2,290 bits and this combination was also found
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Molecular Fingerprint Hybrids for Similarity Searching

Table 1. Discriminatory fingerprint features in activity class DIR: MACCS,"
TGD,™ TGT

Bit pA pD KL divergence  Description

MACCS™

25 0.97 0.03 3.25 C bonded to >3N

53 0.97 0.07 247 2 QHs separated by 4 bonds
84 0.97 0.09 2.24 NH, groups

TGD®

363 0.90 0.03 2.84 D<4>D

468 0.94 0.22 1.24 A<4>D

677 0.98 0.32 1.03 X<3>D

TGTH

8107 0.90 0.01 4.60 A<2>D<4>D<2>
11570 0.97 0.03 3.35 H<3>D<4>D<3>
11575 0.97 0.03 333 H<2>D<4>D<4>

[a] The top-ranked MACCS bits for activity class DIR, their corresponding
probabilities for active (pA) and database (pD) compounds, and the re-
sulting KL divergences are reported. “Q” means any hetero atom except
carbon. [b] The top-ranked TGD bits for DIR. The topological patterns of
TGD are described using different atom types (D: hydrogen-bond donor,
A: hydrogen-bond acceptor, X: neither hydrogen-bond donor or accept-
or, nor acidic, basic or hydrophobic atom) and bond distances between
these atoms. [c] The top-ranked TGT bits for DIR. The pharmacophore
patterns of TGT are described using different atom types (D: hydrogen-
bond donor, A: hydrogen-bond acceptor, H: hydrophobic atom) and
bond distances between these atoms.

Table 2. Discriminatory fingerprint features
MACCS,” TGD,* TGT

in activity class INO:

Bit pA pD
MACCS®

KL divergence Description

89 095 020 134
57 092 021 117
62 098 034 097

2 Os separated by 4 bonds
O in rings
Non-ring bond that connects rings

TGD™

471 089 015 139 A<7>D

680 089 020 111 X<6>D

468 087 022 097 A<4>D

TGTH

9882 086 009 1.72 H<2>D<4>D<4>

5781 058 0.02 1.61
8379 086 0.11 1.54

A<1>H<5-9>D<4>
A<4>D<5-9>A<5-9>

[a] The top-ranked MACCS bits for activity class INO, their corresponding
probabilities for active (pA) and database (pD) compounds, and the re-
sulting KL divergences are reported. [b] The top-ranked TGD bits for INO.
The topological patterns of TGD are described using different atom types
(D: hydrogen-bond donor, A: hydrogen-bond acceptor, X: neither hydro-
gen-bond donor or acceptor, nor acidic, basic or hydrophobic atom) and
bond distances between these atoms. [c] The top-ranked TGT bits for
INO. The pharmacophore patterns of TGT are described using different
atom types (D: hydrogen-bond donor, A: hydrogen-bond acceptor, H: hy-
drophobic atom) and bond distances between these atoms.

to increase the search performance of individual fingerprints in
many cases, as reported in figure ST (Supporting Information).
However, as shown in figure S2 (Supporting Information),
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these increases in compound recall were overall much smaller
than those achieved with hybrid fingerprints containing only
13% of the bits of the combined fingerprint. Interestingly, as
shown in figure S3 (Supporting Information), control finger-
prints containing 300 randomly chosen bits also performed in
many instances better than the parental fingerprints, but in-
creases in recall rates were in almost all cases significantly
higher for hybrid fingerprints consisting of bit positions select-
ed based on KL divergence (figure 54, Supporting Information).
By contrast, using only the top 100 MACCS bits often reached
and sometimes exceeded the performance level of the un-
modified MACCS fingerprint, whereas fingerprints only com-
prising the top 100 TGD or TGT bits were outperformed by
their parental fingerprints (figure S5, Supporting Information).
These observations were consistent with previous findings that
fingerprint bit subsets are largely responsible for similarity
search performance but that reduced fingerprint representa-
tions rarely exceed the performance of unmodified versions of
constant-format fingerprints.?"?>2 Figure 3 reports the gain or
loss in recovery rates of hybrid fingerprints in 1-NN and 5-NN
search calculations over all activity classes compared to the
best performing parental fingerprint. In 1-NN calculations,
hybrid fingerprints achieved top recovery rates for 24 of 27
compound classes and in 5-NN calculations for 22 classes. In-
creases in recovery rates of up to 40% were observed. Taken
together, the findings discussed above confirm (1) the ability
of the KL divergence selection scheme to identify most dis-
criminatory bit positions/features of original fingerprints and
(2) the potential of fingerprint recombination to further in-
crease search performance.

Because features from different fingerprints are independ-
ently selected for recombination (exclusively guided by identi-
fying most discriminatory bit positions), it is attractive to ex-
plore potential relationships between different types of fea-
tures at the molecular level. Therefore, we have mapped fea-
tures corresponding to top-scoring bit positions onto com-
pound activity classes. In a number of instances, relationships
were observed that help to rationalize the superior perfor-
mance of hybrid fingerprints. Figure 4 shows two examples. In
these cases, the most discriminatory fingerprint features re-
ported in Table 1 and Table 2, respectively, were mapped onto
the compound activity classes for which they were derived. In
both cases, the top MACCS, TGD, and TGT features delineated
substructures that were shared by nearly all compounds in
each activity class. Thus, in these cases, the most discriminato-
ry structural and topological or pharmacophore patterns put
high emphasis on compound class-characteristic substructures
when hybrid fingerprints were applied, which suggests an ex-
planation for the higher discriminatory ability and ensuing
better search performance of compound class-directed hybrid
fingerprints compared to their generally applicable parents.

In conclusion, the fingerprint recombination approach re-
ported herein represents a new concept for the design of com-
pound class-directed fingerprints. By combining rationally se-
lected bit positions corresponding to different types of molec-
ular representations such as substructures and pharmacophore
patterns, compound class-specific molecular features are fur-
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Figure 2. Recall curves. The 1-NN similarity search performance of a hybrid fingerprint is compared to the unmodified MACCS, TGD, and TGT fingerprints by
calculating cumulative recall curves reporting the number of active compounds in database selection sets of increasing size. Four representative examples
are shown: a) dihydrofolate reductase inhibitors (DIR); b) glycoprotein lib-llla receptor antagonists (GLY); c) inosine monophosphate dehydrogenase inhibitors
(INO), and d) xanthine oxidase inhibitors (XAN).
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Figure 3. Hybrid fingerprint performance. For each activity class, the difference in recovery rate between the hybrid fingerprint and the best performing un-
modified fingerprint (MACCS, TGD, or TGT) is reported for a) 1-NN and b) 5-NN calculations and databases selection sets of 100 () or 1000 (M) compounds.
Positive values indicate a gain in recovery rate and negative values a loss.
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Figure 4. Mapping of preferred fingerprint features. For two activity classes,
a) DIR and b) INO, substructures are highlighted that are present in the ma-
jority of active compounds (28 of 30 for DIR and 31 of 35 for INO). Top-
ranked MACCS, TGD, and TGT bits/features according to Table 1 and Table 2
were mapped onto these substructures. Mapped hydrogen-bond acceptors
and donors are circled.

ther emphasized. The selection of discriminatory features from
different fingerprints is facilitated by KL divergence analysis.
The resulting gain in chemical information leads to improved
search performance of hybrid fingerprints compared to their
parental fingerprints.
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